Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes
نویسندگان
چکیده
Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction.
منابع مشابه
Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملLarge-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
The membrane raft hypothesis postulates the existence of lipid bilayer membrane heterogeneities, or domains, supposed to be important for cellular function, including lateral sorting, signaling, and trafficking. Characterization of membrane lipid heterogeneities in live cells has been challenging in part because inhomogeneity has not usually been definable by optical microscopy. Model membrane ...
متن کاملLipid and Protein Sorting By, and Generation Of, Membrane Curvature in Model Systems
The potential physiological relevance of liquid-liquid phase separation in lipid membranes to the formation and stability of “lipid rafts” in cellular plasma membranes has prompted extensive investigation of the physical chemistry underlying these phenomena. Furthermore, the concept of lipid rafts – 10-200 nm regions of cellular membrane enriched in specific lipids and proteins to enable comple...
متن کاملThe Structure of Cholesterol in Lipid Rafts
Rafts, or functional domains, are transient nanoor mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained ...
متن کاملTuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers.
Plasma membranes of cells are asymmetric in both lipid and protein composition. The mechanism by which proteins on both sides of the membrane colocalize during signaling events is unknown but may be due to the induction of inner leaflet domains by the outer leaflet. Here we show that liquid domains form in asymmetric Montal-Mueller planar bilayers in which one leaflet's composition would phase-...
متن کامل